
EE244 Final Project Report - Heart Disease Analysis and Prediction
Joshua Chen
861257903

Introduction:
With increasingly unaffordable healthcare, obesity rates at a record high, and physical

health on the decline, Americans are at risk of a multitude of health complications, and they may
not be aware. This project aims to determine important/unimportant attributes and a reliable
classifier (acc ~ 95%) to identify those individuals at risk of heart complications. Such an
application can help shed some light on the general public about their own health and if they
should start taking their lifestyles more seriously.

This project explores the Heart Disease Data Set from the UCI Machine Learning
Repository, and uses various machine learning models to predict an individual’s risk of having
heart disease. The purpose of using several models is for comparison to determine which
prediction model is best suited for data sets like this one. Besides comparing the different
models, hyperparameters are also tuned to determine their effects on their respective classifiers.
In total there are three experimental runs: benchmark, omitted features, and tuned
hyperparameters. For the benchmark run, all models are tested with their default
hyperparameters. In omitted features, the least significant features determined from the
benchmark run are removed and the models are tested again, but with the default
hyperparameters. The final run involves using all features, but with each model’s
hyperparameters tuned to observe the effects on classification performance.

Related Work:
The experimental runs for this project involve the use of six sklearn classifiers. The

sklearn classifiers I used are: Random forest, AdaBoost, Decision Tree, Logistic Regression,
XGBoost, and KNN. Each one has its advantages and limitations depending on the nature of the
data set. For logistic regression in particular, it is limited in its performance when the data set is
too small or when some features provide overlapping information [1]. Both of those undesirable
situations are applicable here for this data set since there are only about 300 data samples, and
some of the 13 features do share similarities. It is hoped that the omitted features run will
improve this classifier’s performance as that run intends to drop some features.

From my own prior experience working with random forest, I have high hopes for this
classifier since it, like other ensemble methods, has high generalization capabilities due to
bagging and random feature selection [2]. This means that this classifier can give high
classification performance with less memory (trees) required, and is robust to noise [3].
Additionally, this model is claimed to be just as reliable, or better than the AdaBoost model. The
only main disadvantage of this classifier isn’t applicable for this project, and that is, it can’t
handle dynamic data well [4].

The XGBoost classifier is also another ensemble model with recognition. Mostly praised
for its scalability, performance, and popularity for machine learning competitions [5]. It differs
from AdaBoost and is a massive improvement since it directly uses each decision tree’s residual
error to influence the next decision tree instead of going through the entire process of updating
weights. Generally, it is much more efficient, flexible, and accurate than AdaBoost.

Technical Approach:
The first phase of this project is a preliminary data analysis to help me become more

familiar with the data and analyze if there is any need to preprocess the data file before using it
for machine learning applications. Shown below in Figure [1] are the data properties of the
heart.csv file. All data types are numeric (int64 and float64), so there is no need to perform any
label encoding. Next, it was determined that there were no missing values in the data set, so I
was not required to do any further preprocessing of the data file.

Figure 1: heart.csv Properties

With the data file already ready for use, the next step in my approach was to perform the
benchmark experimental run, where I tested out six sklearn classifier models with their default
hyperparameters. The test accuracy results of this run serve as a datum to which I can compare
the two modified experimental runs. Just after the benchmark run, I decided to extract the feature
importance for the ensemble models to determine which features are the most and least
influential in each model’s decision making process. Once the least influential features were
determined for each or all models, those features were then removed from the data set. This
modified data set with only the “important features” was then passed to the second experimental
run: omitted features.

In the omitted features experimental run, all of the classifiers’ hyperparameters were kept
in their default states, and the input data included only the more important features. The least
influential factors that were removed from the data set are: fbs, restecg, and sex. Fbs stands for
“Fasting blood sugar”, restecg stands for “Resting electrocardiographic results”, and sex is
represented as either male or female.

In the final experimental run, the classifiers’ hyperparameters are all tuned and each
model is tested with a combination of different hyperparameter settings to observe the effects on
classification performance. More details of each run and the feature importance analysis can be
found in the next section: Experimental Results.

Experimental Results:
The results of the experimental runs were all quite decent. The general accuracy range of

the models was about 80-90%, with KNN being below this metric and XGBoost being above. In
all three experimental runs, XGBoost was consistently the best and most accurate classifier,
reaching an accuracy metric of 93.4%.

Figure [2] below shows the results of the benchmark run. Here, all models were tested
with their default hyperparameters. XGBoost has already reached its maximum value, with the
random forest classifier not far behind. KNN is tested with 5 neighbors here with uniform
weights, so its performance is low, not surprisingly.

Figure 2: Benchmark Results

Now that the benchmark run has provided all necessary metrics and results, the next step
is feature importance extraction. The following Figures [3-6] show the relative feature
importance for every attribute for the ensemble models: Random forest, AdaBoost, Decision
Tree, and XGBoost. Generally, the most important features are: cp, thal, chol, thalach, and ca.
Respectively, these are chest pain type, Thal, serum cholesterol in mg/dl, maximum heart rate
achieved, and number of major vessels (0-3) colored by fluoroscopy. This makes perfect sense
since all of these attributes are directly related to cardiovascular health. Higher heart rate, more
cholesterol, and existence of chest pain are indicators of heart complications and related issues.
The least important features were determined to be: fbs, restecg, and sex. Respectively, these are

fasting blood sugar > 120 mg/dl, resting electrocardiographic results, and biological gender.
Heart disease does not discriminate on the basis of sex, so it’s understandable why that is
unimportant in predicting heart disease. Overnight fasting blood sugar is not important in
determining heart disease, but it is important in analyzing potential diabetics. What is interesting
to note is that resting ECG is considered unimportant in the prediction, although it is directly
related to detecting heart abnormalities such as irregular heart rate. Despite this, all three of these
features are dropped from the data set to create a modified data set for use in the omitted features
experimental run.

Figure 3: Feature Importance for Random Forest

Figure 4: Feature Importance for AdaBoost

Figure 5: Feature Importance for Decision Tree

Figure 6: Feature Importance for XGBoost

Shown in Figure [7] are the test accuracy results for the omitted features run. Out of all
models, only the AdaBoost has shown any improvement. KNN stayed the same, while the
remaining four models suffered lower metrics than the benchmark. This signifies that although
the less important features shouldn’t be considered heavily, they shouldn’t be completely ignored
since they may carry some sensitive information that may help a classifier. Minimal correlation

or importance does not mean no correlation. It was at first surprising to me that all three of the
dropped features were the least important for the Decision Tree classifier, yet the model only
worsened.

Figure 7: Omitted Features Experimental Results

Figure 8: Tuned Hyperparameters Experimental Results

Figure [8] above shows the test accuracy results of the tuned hyperparameters
experimental run. The only two models that saw improvement through changing
hyperparameters were AdaBoost and KNN. The changes I made for these two were decreasing
the number of trees from 75 to 50 for AdaBoost and decreasing the number of neighbors from 5
to 3 for KNN.

The logistic regression, random forest, and XGBoost all became slightly worse. For the
two ensemble models, I decreased the number of trees substantially. The result of this action
makes sense since with fewer trees, either model will not be able to train completely to the
optimal extent. For logistic regression, I changed the norm criterion from L2 to L1 norm, so the
accuracy change is minor but worse nonetheless. L1 is not true distance, so this result also makes
sense.

The model that suffered worse from the tuning was the decision tree classifier. The only
change was the information gain split criterion going from gini to entropy. The main difference
between the gini impurity and entropy criterion is the computational cost. Generally, the gini is
faster and more efficient because it has less complex computations than the entropy criterion.

Additionally, the gini impurity range is [0,0.5] while the entropy range is [0,1]. This means that
the gini impurity criterion is better than the entropy criterion at selecting the best features, which
explains why the decision tree classifier’s performance worsened substantially.

Conclusions:
The most important takeaway from this project for me was the results of the omitted

features run. I initially thought that by omitting unimportant features, the performance of all
models would increase. That was not the case since even lesser features carry some useful or
sensitive information for the classifiers to perform correctly. For the tuning hyperparameters run,
all results are as expected with how I manipulated the combinations of each classifier’s
hyperparameters. Overall, the best models for classifying the heart disease data set are XGBoost
and Random Forest, as both of these models have F1 scores exceeding 90, and metrics closest to
the target accuracy metric of ~95%. The primary reason for these two is because both models
have high generalizability and for XGBoost, scalability. Both models are adapted to handle small
data sets that more conventional models like logistic regression will suffer with.

Acknowledgements:
Link to Dataset on UCI Machine Learning Repo:
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

References:

[1] T. Juliana, M. William J (2016). "Logistic Regression Relating Patient Characteristics to
Outcomes". JAMA. 316 (5): 533–4. doi:10.1001/jama.2016.7653. ISSN 0098-7484. OCLC
6823603312. PMID 27483067.

[2] Y. Mishina, M. Tsuchiya & H. Fujiyoshi, "Boosted random forests," 2014 International
Conference on Computer Vision Theory and Applications (VISAPP), 2014, pp. 594-598.

[3] Breiman, L. (2001). “Random forests,” Machine learning. Springer.

[4] A. Saffari, C. Leistner, J. Santner, M. Godec & H. Bischof, "On-line Random Forests," 2009
IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 2009,
pp.1393-1400, doi: 10.1109/ICCVW.2009.5457447.

[5] T. Chen, C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” 22nd ACM SIGKDD
International Conference, 2016, doi: 10.1145/2939672.2939785.

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

